Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 472: 134425, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38691998

RESUMEN

Soil health is a crucial aspect of sustainable agriculture and food production, necessitating attention to the ecological risks associated with substantial amounts of mulch film residues. Biodegradable mulch films (BDMs) carry the same risk of mulch film residues formation as low-density polyethylene (LDPE) mulch films during actual use. More information is needed to elucidate the specific impacts of mulch film residues on the soil environment. Integrated 16S rRNA gene sequencing and non-targeted metabolomics, this study revealed the response patterns of bacterial communities, metabolites, and metabolic functions in the soil from three different agricultural regions to the presence of mulch film residues. LDPE mulch film residues negatively impacted the bacterial communities in the soils of Heilongjiang (HLJ) and Yunnan (YN) and had a lesser impact on the metabolic spectrum in the soils of HLJ, YN, and Xinjiang (XJ). BDM residues had a greater negative impact on all three soils in terms of both the bacterial communities and metabolites. The impact of BDM treatment on the soils of HLJ, YN, and XJ increased sequentially in that order. It is recommended that, when promoting the use of biodegradable mulch films, a fuller assessment should be made, accounting for local soil properties.

2.
Front Bioeng Biotechnol ; 12: 1389327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605983

RESUMEN

In this review, we report investigating photothermal hydrogels, innovative biomedical materials designed for infection control and tissue regeneration. These hydrogels exhibit responsiveness to near-infrared (NIR) stimulation, altering their structure and properties, which is pivotal for medical applications. Photothermal hydrogels have emerged as a significant advancement in medical materials, harnessing photothermal agents (PTAs) to respond to NIR light. This responsiveness is crucial for controlling infections and promoting tissue healing. We discuss three construction methods for preparing photothermal hydrogels, emphasizing their design and synthesis, which incorporate PTAs to achieve the desired photothermal effects. The application of these hydrogels demonstrates enhanced infection control and tissue regeneration, supported by their unique photothermal properties. Although research progress in photothermal hydrogels is promising, challenges remain. We address these issues and explore future directions to enhance their therapeutic potential.

3.
Plant Dis ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549274

RESUMEN

Root rot is a very destructive soil-borne disease, which severely affects the quality and yield of Angelica sinensis in major planting areas of Gansu Province, China. Twelve Fusarium strains were identified from root rot tissue and infected soil in the field, by comparing each isolate strain internal transcriptional spacer, translation elongation factor 1-α sequence and RNA polymerase second largest subunit gene (RPB2) with the sequences of known fungal species in the NCBI database. Of these isolates, four were F. acuminatum, followed by three F. solani, two F. oxysporum, and one each of F. equiseti, F. redolens, and F. avenaceum. Under greenhouse conditions, pathogenicity testing experiment was carried out using five strains: two F. acuminatum, one F. solani, one F. oxysporum, and one F. equiseti. Among them, the incidence of F. acuminatum-induced root rot on A. sinensis was 100%; hence, it was the most aggressive. Liquid chromatography was used to show that F. acuminatum was capable of producing neosolaniol (NEO), deoxynivalenol (DON), and T-2 toxins. Of these, the level of NEO produced by F. acuminatum was high, compared with the other two toxins. By isolating Fusarium spp. and characterizing their toxin-producing capacity, this work provides a new information for effectively preventing and controlling A. sinensis root rot in the field, as well as improving the quality of its medicinal materials. Keywords: Angelica sinensis, Fusarium spp., mycotoxins, pathogenicity tests, root rot disease.

4.
J Hazard Mater ; 469: 133934, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447370

RESUMEN

It remains unclear how symbiotic microbes impact the growth of peanuts when they are exposed to the pollutants cadmium (Cd) and microplastics (MPs) simultaneously. This study aimed to investigate the effects of endophytic bacteria Bacillus velezens SC60 and arbuscular mycorrhizal fungus Rhizophagus irregularis on peanut growth and rhizosphere microbial communities in the presence of Cd at 40 (Cd40) or 80 (Cd80) mg kg-1 combined without MP or the presence of low-density polyethylene (LDPE) and poly butyleneadipate-co-terephthalate (PBAT). This study assessed soil indicators, plant parameters, and Cd accumulation indicators. Results showed that the application of R. irregularis and B. velezens significantly enhanced soil organic carbon and increased Cd content under the conditions of Cd80 and MPs co-pollution. R. irregularis and B. velezens treatment increased peanut absorption and the enrichment coefficient for Cd, with predominate concentrations localized in the peanut roots, especially under combined pollution by Cd and MPs. Under treatments with Cd40 and Cd80 combined with PBAT pollution, soil microbes Proteobacteria exhibited a higher relative abundance, while Actinobacteria showed a higher relative abundance under treatments with Cd40 and Cd80 combined with LDPE pollution. In conclusion, under the combined pollution conditions of MPs and Cd, the co-treatment of R. irregularis and B. velezens effectively immobilized Cd in peanut roots, impeding its translocation to the shoot.


Asunto(s)
Glomeromycota , Micorrizas , Contaminantes del Suelo , Cadmio/toxicidad , Microplásticos , Plásticos , Arachis , Carbono , Polietileno , Suelo , Raíces de Plantas , Bacterias , Contaminación Ambiental , Contaminantes del Suelo/toxicidad
5.
J Am Chem Soc ; 146(10): 6665-6674, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412223

RESUMEN

RNA-cleaving ribozymes are promising candidates as general tools of RNA interference (RNAi) in gene manipulation. However, compared with other RNA systems, such as siRNA and CRISPR technologies, the ribozyme tools are still far from broad applications on RNAi due to their poor performance in the cellular context. In this work, we report an efficient RNAi tool based on chemically modified hammerhead ribozyme (HHR). By the introduction of an intramolecular linkage into the minimal HHR to reconstruct the distal interaction within the tertiary ribozyme structure, this cross-linked HHR exhibits efficient RNA substrate cleavage activities with almost no sequence constraint. Cellular experiments suggest that both exogenous and endogenous RNA expression can be dramatically knocked down by this HHR tool with levels comparable to those of siRNA. Unlike the widely applied protein-recruiting RNA systems (siRNA and CRISPR), this ribozyme tool functions solely on RNA itself with great simplicity, which may provide a new approach for gene manipulation in both fundamental and translational studies.


Asunto(s)
ARN Catalítico , ARN Catalítico/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Procesamiento Proteico-Postraduccional , Conformación de Ácido Nucleico
6.
ACS Omega ; 9(7): 7668-7678, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405495

RESUMEN

Microbial degradation of dyes is vital to understanding the fate of dyes in the environment. In this study, a fungal strain A-3 and a bacterial strain L-6, which were identified as Aspergillus fumigatus and Pseudomonas fluorescens, respectively, had been proven to efficiently degrade crystal violet (CV) dye. The decolorization of CV dye by fungal and bacterial cocultivation was investigated. The results showed that the decolorization rate of cocultures was better than monoculture (P. fluorescens in L-6 (PF), and that of A. fumigatus A-3 (AF)). Furthermore, enzymatic analysis further revealed that Lac, MnP, Lip, and NADH-DCIP reductases were involved in the biodegradation of CV dyes. UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS) were used to examine the degradation products. GC-MS analysis showed the presence of 4-(dimethylamino) benzophenone, 3-dimethylaminophenol, benzyl alcohol, and benzaldehyde, indicating that CV was degraded into simpler compounds. The phytotoxicity tests revealed that CV degradation products were less toxic than the parent compounds, indicating that the cocultures detoxified CV dyes. As a result, the cocultures are likely to have a wide range of applications in the bioremediation of CV dyes.

7.
Mol Plant Pathol ; 25(1): e13396, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37823341

RESUMEN

Root-knot nematodes (RKNs) inflict extensive damage to global agricultural production. Intercropping has been identified as a viable agricultural tool for combating RKNs, but the mechanisms by which intercropped plants modulate RKN parasitism are still not well understood. Here, we focus on the cucumber-amaranth intercropping system. We used a range of approaches, including the attraction assay, in vitro RNA interference (RNAi), untargeted metabolomics, and hairy root transformation, to unveil the mechanisms by which weak host plants regulate Meloidogyne incognita chemotaxis towards host plants and control infection. Amaranth roots showed a direct repellence to M. incognita through disrupting its chemotaxis. The in vitro RNAi assay demonstrated that the Mi-flp-1 and Mi-flp-18 genes (encoding FMRFamide-like peptides) regulated M. incognita chemotaxis towards cucumber and controlled infection. Moreover, M. incognita infection stimulated cucumber and amaranth to accumulate distinct metabolites in both root tissues and rhizosphere soils. In particular, naringenin and salicin, enriched specifically in amaranth rhizosphere soils, inhibited the expression of Mi-flp-1 and Mi-flp-18. In addition, overexpression of genes involved in the biosynthesis of pantothenic acid and phloretin, both of which were enriched specifically in amaranth root tissues, delayed M. incognita development in cucumber hairy roots. Together, our results reveal that both the distinct host status and disruption of chemotaxis contribute to M. incognita inhibition in intercropping.


Asunto(s)
Tylenchoidea , Animales , Tylenchoidea/fisiología , Suelo , Quimiotaxis , Rizosfera , Plantas
8.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040655

RESUMEN

AIMS: Botrytis cinerea is a pathogenic fungus that infests multiple crops, which causes a severe decrease in yield and generates substantial losses in the economy. Palmarosa essential oil (PEO) is a primary aromatic compound extracted from palmarosa that is commonly used for scent, medicine, and flavoring foods due to its diverse bioactive properties. In this study, we explored the antifungal activity and the main mechanism of action of PEO against B. cinerea. In addition, the components and control effects of PEO were also studied. METHODS AND RESULTS: The antifungal assay was tested using the mycelial growth rate method and colony morphology. The constituents of PEO were identified according to gas chromatography/mass spectrometry (GC-MS). The main mechanism of action of PEO was evaluated by measuring representative indicators, which consist of cell contents leakage, excess reactive oxygen species (ROS), and other related indicators. The results indicated that at a concentration of 0.60 ml l-1, PEO exhibits strong antifungal activity against B. cinerea. The PEO mainly included 13 compounds, of which citronellol (44.67%), benzyl benzoate (14.66%), and acetyl cedrene (9.63%) might be the main antifungal ingredients. The study elucidated the main mechanism of action of PEO against B. cinerea, which involved the disruption of cell membrane structure, resulting in altered the cell membrane permeability, leakage of cell contents, and accumulation of excess ROS. CONCLUSIONS: PEO is a satisfactory biological control agent that inhibits B. cinerea in postharvest onions. PEO (0.60 ml l-1) exhibited strong antifungal activity by disrupting the cell membrane structure, altering cell membrane permeability, leading to the cell contents leakage, accumulation of excess ROS and increased level of Malondialdehyde (MDA) compared to the control group.


Asunto(s)
Antifúngicos , Aceites Volátiles , Antifúngicos/farmacología , Aceites Volátiles/farmacología , Cebollas , Especies Reactivas de Oxígeno , Botrytis , Enfermedades de las Plantas/prevención & control
9.
Curr Microbiol ; 81(1): 50, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150064

RESUMEN

A Gram-stain-negative, non-spore-forming, flagellated, motile, aerobic, rod-shaped bacteria strain, designated YY2XT, was isolated from chromium-contaminated soil. Phylogenetic analysis based on 16S rRNA gene, recA gene, and whole genome indicated that the strain represented a new member of the genus Ochrobactrum, family Brucellaceae, class Alphaproteobacteria. The phylogenetic trees based on 16 s rRNA gene, revealed that Falsochrobactrum ovis DSM26720T (96.7%), Ochrobactrum gallinifaecis DSM15295T (96.2%), and Pseudochrobactrum asaccharolyticum DSM25619T (96.2%) are the most closely related phylogenetic neighbors of strain YY2XT. The draft genome of YY2XT was approximately 4,650,646 bp in size with a G + C content of 53.0 mol%. Average nucleotide identity and digital DNA-DNA hybridization values among strain YY2XT and the selected Brucellaceae species were 71.4-83.1% and 13.5-42.7%, which are below the recommended cut-off values for species delineation. Growth of strain YY2XT occurred within pH 5-10 (optimum, pH 7-8), 4 â„ƒ-42 °C (optimum, 30 °C), and NaCl concentrations of 0.0-6.0% (optimum, 1.0%). Major quinone system was ubiquinone 10, the major fatty acids were C16:0, C18:1ω7c, and C16:1ω7c and the major polyamines were spermidine and putrescine. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, and four undefined lipids. On the basis of the phenotypic, genotypic and chemotaxonomic traits, strain YY2XT was considered to represent a novel species of the genus Ochrobactrum, for which the name Ochrobactrum chromiisoli sp. nov. is proposed. The type strain is YY2XT (= CCTCC AB 2023035T = JCM 36000T).


Asunto(s)
Ochrobactrum , Filogenia , ARN Ribosómico 16S/genética , Ochrobactrum/genética , Cromo , Ácidos Grasos , Suelo , ADN
10.
Plant Dis ; 2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37981570

RESUMEN

Orychophragmus violaceus is an annual or perennial herb in the Brassicaceae family. It is widely planted in China and used as an ornamental and green manure plant (Luo et al. 2022). In September 2022, a survey conducted in a 600 m2 garden in Lanzhou (36°06'N, 103°43'E) found that over 70% of O. violaceus plants were infected with powdery mildew, with 80% of the leaf area on the upper surface of infected leaves was infected. The white colonies on the upper surface of the leaves gradually expanded, thickened, and spread to cover the stem surface. In severe cases, entire foliage withered and the plants died. Fungal structures were taken from the leaves with adhesive tape and placed in sterile water for microscopic observation. The conidiophores were upright, cylindrical, composed of 3 to 4 cells, and measured 92.3 ± 12.9 × 9.2 ± 0.6 µm (n=30). Conidial pedicels had 21.6 ± 3.4 µm (n=50) long cylindrical podocytes. Monoconidia were cylindrical or oval in shape, 32.9 ± 6.1 µm long and 15.1 ± 2.1 µm wide (n=80). Conidia lacked an obvious cellulose body. The bud tubes formed from the end of conidia, and papillary appressoria developed on the epiphytic mycelia. Based on these morphological characteristics, the pathogen was initially identified as Erysiphe cruciferarum (Braun et al. 2012). To validate the identity, the internal transcribed spacer (ITS) region of an isolate EYL was amplified by PCR and sequenced using both ITS1/ITS4 and ITS5/PM6 primers (Takamatsu et al. 2001). The resulting sequences were deposited at GenBank (accession nos: OR437967 and OR437969). The ITS sequence of the isolate EYL (OR437967) is 99% (451/453) identical to E. cruciferarum (KP730001) on Brassica napus in China and that of the isolate EYL (OR437969) is 100% (509/509) identical to E. cruciferarum (KM260718) on B. juncea in Vietnam. Pathogenicity experiments were performed on six-week-old plants with an average of 10 ± 0.8 leaves. In the inoculated group, five healthy plants were inoculated by gently pressing the upper surface of diseased leaves against the upper surface of leaves of healthy plants for about 5 to 10 seconds. In the control group, the leaves of five healthy plants were treated with asymptomatic using the same method as described above. The plants were maintained in a greenhouse set at 25℃, 14-h photoperiod, and ≥ 70% humidity. After 13 days, all inoculated plants showed symptoms of powdery mildew, while the plants in the control group had no symptoms. The fungus on the inoculated plant was re-isolated and identified as E. cruciferarum based on its morphological characteristics and ITS sequence. Powdery mildew caused by E. cruciferarum has been reported on Cleome hassleriana in Italy and B. juncea in Australia (Garibaldi et al. 2009; Kaur et al. 2008). To our knowledge, this is the first time that powdery mildew caused by E. cruciferarum have been reported on O. violaceus in China. This disease poses a potential threat to the quality and yield of O. violaceus plants, which may warrant the development of preventative and management strategies in the future.

11.
Antonie Van Leeuwenhoek ; 116(12): 1433-1445, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37874522

RESUMEN

A Gram-positive, aerobic, rod-shaped non-motile, non-sporulating bacterium, designated CSA2T, was isolated from chromium-containing soils collected from a chemical plant. The 16S rRNA gene sequence of strain CSA2T showed the highest homology with Leucobacter chromiireducens subsp. solipictus (97.85%), Leucobacter chromiireducens subsp. chromiireducens (97.85%). The digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI) and the amino acid identity (AAI) values among strains CSA2T and the selected Leucobacter species were 20.6-23.4% (dDDH), 72.67-78.03% (ANI) and 66.39-76.16% (AAI), falling below the recommended thresholds for species delimitation. The principal fatty acids were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid. The major menaquinones detected were MK-10 and MK-11. The cell-wall amino acids included 2,4-diaminobutyric acid, threonine, glutamic acid, alanine and glycine. Based on molecular feature, phenotypic and chemotaxonomic, strain CSA2T was considered to be a novel species of the genus Leucobacter., and the name Leucobacter edaphi sp. nov. is proposed. The type strain is CSA2T (= JCM 34360T = CGMCC 1.18747T).


Asunto(s)
Actinobacteria , Actinomycetales , Cromatos , Cromo , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/análisis , Aminoácidos , ADN , Filogenia , ADN Bacteriano/genética , ADN Bacteriano/química , Análisis de Secuencia de ADN , Fosfolípidos/análisis
12.
Environ Sci Pollut Res Int ; 30(37): 87721-87733, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37428324

RESUMEN

Vermicompost and biochar have been widely used to improve soil conditions. However, little information is available regarding the efficiency and effectiveness of in situ vermicomposting with biochar (IVB) in monoculture soils. In this study, we estimated the effects of IVB on soil physiochemical and microbial properties, crop yields, and fruit quality under the tomato monoculture system. The soil treatments considered were (i) untreated monoculture soil (MS, control), (ii) MS plus 1.5 t/ha biochar applied to soil surface (MS+1.5BCS), (iii) MS plus 3 t/ha biochar applied to soil surface (MS+3BCS), (iv) MS mixed with 1.5 t/ha biochar (MS+1.5BCM), (v) MS mixed with 3 t/ha biochar (MS+3BCM), (vi) in situ vermicomposting (VC), (vii) VC plus 1.5 t/ha biochar applied to VC surface (VC+1.5BCS), (viii) VC plus 3 t/ha biochar applied to VC surface (VC+3BCS), (ix) VC mixed with 1.5 t/ha biochar (VC+1.5BCM), and (x) VC mixed with 3 t/ha biochar (VC+3BCM). In general, soil pH varied from 7.68 to 7.96 under VC-related treatments. The microbial diversity was much higher in bacterial communities (OTU: 2284-3194, Shannon index: 8.81-9.91) than in fungal communities (OTU: 392-782, Shannon index: 4.63-5.71) in VC-related treatments. Specifically, Proteobacteria was the dominant bacterial phylum, followed by Bacteroidota, Chloroflexi, Patescibacteria, Acidobacteriota, Firmicutes, and Myxococcota. It is worth noting that IVB-related treatments could increase the relative abundance of Acidobacteria and reduced the relative abundance of Bacteroidetes. In addition, the VC+1.5BCM treatment exhibited the greatest yield (9377.6 kg/667m2) and simultaneously showed higher fruit quality (vitamin C, 28.94 mg/100g; soluble sugar, 20.15%) as compared to other treatments. Our results suggested that in situ vermicomposting with biochar can improve soil properties and enhance both crop yields and fruit quality under the tomato monoculture system.


Asunto(s)
Micobioma , Solanum lycopersicum , Suelo/química , Carbón Orgánico/química , Bacterias , Acidobacteria , Bacteroidetes
14.
J Appl Genet ; 64(3): 393-408, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37219731

RESUMEN

MAP65 is a microtubule-binding protein family in plants and plays crucial roles in regulating cell growth and development, intercellular communication, and plant responses to various environmental stresses. However, MAP65s in Cucurbitaceae are still less understood. In this study, a total of 40 MAP65s were identified from six Cucurbitaceae species (Cucumis sativus L., Citrullus lanatus, Cucumis melo L., Cucurbita moschata, Lagenaria siceraria, and Benincasa hispida) and classified into five groups by phylogenetic analysis according to gene structures and conserved domains. A conserved domain (MAP65_ASE1) was found in all MAP65 proteins. In cucumber, we isolated six CsaMAP65s with different expression patterns in tissues including root, stem, leaf, female flower, male flower, and fruit. Subcellular localizations of CsaMAP65s verified that all CsaMAP65s were localized in microtubule and microfilament. Analyses of the promoter regions of CsaMAP65s have screened different cis-acting regulatory elements involved in growth and development and responses to hormone and stresses. In addition, CsaMAP65-5 in leaves was significantly upregulated by salt stress, and this promotion effect was higher in cucumber cultivars with salt tolerant than that without salt tolerant. CsaMAP65-1 in leaves was significantly upregulated by cold stress, and this promotion was higher in cold-tolerant cultivar than intolerant cultivar. With the genome-wide characterization and phylogenetic analysis of Cucurbitaceae MAP65s, and the expression profile of CsaMAP65s in cucumber, this study laid a foundation for further study on MAP65 functions in developmental processes and responses to abiotic stress in Cucurbitaceae species.


Asunto(s)
Cucumis sativus , Cucurbitaceae , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Genoma de Planta , Proteínas Asociadas a Microtúbulos/genética , Filogenia , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
15.
World J Microbiol Biotechnol ; 39(6): 155, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37039945

RESUMEN

Exopolysaccharides (EPSs) are naturally occurring high-molecular-weight carbohydrates that have been widely studied for their biological activities, including antioxidant, immunomodulatory, anticancer and gut microbiota regulation activities. Polysaccharides are abundant in nature and can be derived from animals, plants, algae, and microorganisms, but among polysaccharides with potential uses, EPSs from microorganisms have the advantages of a short production cycle, high yield, and independence of production from season and climate and thus have broad prospects. While the safety of the producing microorganism can represent a problem in application of microbial EPSs, lactic acid bacteria (LAB) have been used by humans for thousands of years, and they and their products are generally recognized as safe. This makes LAB excellent sources for exopolysaccharides. EPS-producing LAB are readily found in nature. Through screening of strains, optimization of culture conditions, and improvement of the growth medium, the yield of EPSs from LAB can be increased and the scope of application broadened. This review summarizes EPSs from LAB in terms of structure, function and applications, as well as yield optimization, and introduces recent research on the biological activities and practical applications of LAB EPSs, aiming to provide references for researchers in related areas.


Asunto(s)
Lactobacillales , Animales , Humanos , Lactobacillales/química , Polisacáridos Bacterianos , Antioxidantes , Medios de Cultivo
16.
Theor Appl Genet ; 136(5): 111, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052704

RESUMEN

KEY MESSAGE: A mutation of CsARC6 not only causes white fruit color in cucumber, but also affects plant growth and fruit quality. Fruit color of cucumber is a very important agronomic trait, but most of the genes affecting cucumber white fruit color are still unknow, and no further studies were reported on the effect of cucumber fruit quality caused by white fruit color genes. Here, we obtained a white fruit mutant em41 in cucumber by EMS mutagenesis. The mutant gene was mapped to a 548 kb region of chromosome 2. Through mutation site analysis, it was found to be a null allele of CsARC6 (CsaV3_2G029290). The Csarc6 mutant has a typical phenotype of arc6 mutant that mesophyll cells contained only one or two giant chloroplasts. ARC6 protein was not detected in em41, and the level of FtsZ1 and FtsZ2 was also reduced. In addition, FtsZ2 could not form FtsZ ring-like structures in em41. Although these are typical arc6 mutant phenotypes, some special phenotypes occur in Csarc6 mutant, such as dwarfness with shortened internodes, enlarged fruit epidermal cells, decreased carotenoid contents, smaller fruits, and increased fruit nutrient contents. This study discovered a new gene, CsARC6, which not only controls the white fruit color, but also affects plant growth and fruit quality in cucumber.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Mutación , Cloroplastos/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Methods ; 19(1): 22, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871001

RESUMEN

BACKGROUND: Root-knot nematodes (RKNs) pose a worldwide threat to agriculture of many crops including cucumber. Genetic transformation (GT) has emerged as a powerful tool for exploration of plant-RKN interactions and genetic improvement of RKN resistance. However, it is usually difficult to achieve a highly efficient and stable GT protocol for most crops due to the complexity of this process. RESULTS: Here we firstly applied the hairy root transformation system in exploring root-RKN interactions in cucumber plants and developed a rapid and efficient tool transformation using Rhizobium rhizogenes strain K599. A solid-medium-based hypocotyl-cutting infection (SHI) method, a rockwool-based hypocotyl-cutting infection (RHI) method, and a peat-based cotyledon-node injection (PCI) method was evaluated for their ability to induce transgenic roots in cucumber plants. The PCI method generally outperformed the SHI and RHI methods for stimulating more transgenic roots and evaluating the phenotype of roots during nematode parasitism. Using the PCI method, we generated the CRISPR/Cas9-mediated malate synthase (MS) gene (involved in biotic stress responses) knockout plant and the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16, a potential host susceptibility gene for RKN) promoter-driven GUS expressing plant. Knockout of MS in hairy roots resulted in effective resistance against RKNs, while nematode infection induced a strong expression of LBD16-driven GUS in root galls. This is the first report of a direct link between these genes and RKN performance in cucumber. CONCLUSION: Taken together, the present study demonstrates that the PCI method allows fast, easy and efficient in vivo studies of potential genes related to root-knot nematode parasitism and host response.

18.
Plant Dis ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916844

RESUMEN

Centella asiatica belongs to the Umbelliferae family of perennial herbaceous plants, which are grown worldwide for use as health supplements, edible vegetables and traditional herbs, and are of vital medicinal and edible value in China. (Biswas et al. 2021). In October 2022, the investigation in the 800 m2 garden of Lanzhou (36°06' N,103°43' E) found that more than 80% of C. asiatica plants were infected by powdery mildew, and the leaf infection rate was 90%. The disease severely affects the actual value of C. asiatica. At the beginning of the disease, thin, radial, irregular white colonies appear on the leaves and gradually spread to the stems. The white colony then expands and thickens, covering the upper surface of the whole leaf, and gradually spreading to the lower parts of the stem and leaf. In severe cases, the leaves wither and die. A small portion of fungal spores was glued from the leaf surface with adhesive tape and placed in sterile water for microscopic examination (Zhang et al. 2022). The conidiophore is upright, cylindrical, composed of 3-4 cells, and its size is 72 to 110 × 8 to 10 µm. Conidial pedicels have 16 to 26 µm long cylindrical podocytes. Monoconidia are cylindrical or oval in shape, 16 to 37 µm long, width 11 to 18 µm (n=80). Conidia lack an obvious cellulose body. The bud tube is formed from the end of conidia, and papillary appressorium develops on the epiphytic mycelia. Based on these morphological characteristics, the pathogen was initially identified as Erysiphe cruciferarum (Braun et al. 2012). To validate the identity, the internal transcribed spacer (ITS) of the pathogen (JXC) rDNA was amplified by PCR and sequenced with PM6/ITS5 and PM5/ITS4 primers (Takamatsu et al. 2001). The resulting sequences were registered to GenBank (GenBank Accession OP935627 and OQ253404). At the same time, the ITS sequence size was 535 bp and 521 bp respectively. The ITS sequence of the JXC was 99% (527/534) identical to E.cruciferarum (KT588635) on Eschscholzia californica in Slovakia and 99% (527/534) identical to E.cruciferarum (KC878683) on Chinese Cabbage in China. The ITS sequences from GenBank were subjected to conduct maximum likelihood phylogenetic analysis by MEGA 7.0. The data indicate that strain JXC and E. cruciferarum are clustered on the same branch. The pathogenicity test was performed according to Koch's postulate. By gently pressing the infected leaves on five healthy potted C. asiatica. Meanwhile, five uninoculated plants were used as controls (Zhang et al. 2022). The plants were put into a greenhouse culture (25℃, 14 h light, 10 h dark, humidity ≥ 70%). After 12 days, the inoculated plants showed symptoms of powdery mildew, while the control group had no symptoms. The fungus on the inoculated plant was re-isolated, and identified as E. cruciferarum based on morphological observations and molecular identification. The powdery mildew caused by E.cruciferarum has been reported on Indian mustard in Korea and Chinese cabbage in China, respectively (Kim et al. 2009; Zhao et al. 2014). To our knowledge, this is the first report of C. asiatica powdery mildew caused by E.cruciferarum in China. This finding poses a potential threat to the quality and yield of C. asiatica plants, while providing a preventive basis for the cultivation of C. asiatica.

19.
Bioresour Technol ; 374: 128773, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36828224

RESUMEN

To minimize environmental pollution and waste of resources, distillers' grains (DG) was used to produce 1,3-propanediol. Biological, physical, and chemical methods were used for pretreatment. The correlation between features of pretreated samples and enzymatic digestibility was analyzed. The results showed that the glucan and xylan conversion of dilute sulfuric acid pretreated DG increased by 69.59% and 413.68%, respectively. The glucan conversion of microwave pretreated and xylan conversion of laccase pretreated DG increased by 14.22% and 34.19%, respectively. Pretreatment enhanced enzymatic digestibility through changing the dense structure and features of DG making them conductive to enzymatic hydrolysis. The production of 1,3-propanediol using enzymatic hydrolysate of pretreated DG and glycerol in shake-flask was 17 g/L. The utilization of DG not only provides plentiful raw materials replacing fossil fuels to produce biofuels and other chemicals but efficiently reduces environmental waste.


Asunto(s)
Glucanos , Xilanos , Fermentación , Propilenglicol , Residuos Industriales , Hidrólisis
20.
Mar Pollut Bull ; 187: 114516, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36621297

RESUMEN

Microplastics have raised growing awareness due to their ubiquity and menaces to coastal resilience and sustainability. The abundance, distribution, and characteristics of microplastics in water and organisms in Xiamen were evaluated. Results showed that the average abundance of microplastics in the surface water of Xiamen Bay was 1.55 ± 1.94 items/m3. The dominant color, size, shape, and polymer type were white, 1.0-2.5 mm, and fragments and lines, and polyethylene and polypropylene, respectively. The average abundance of microplastics in the fish in Xiamen was 2.44 ± 1.56 items/g wet weight. They were dominated by fibers of blue polyethersulfone and polyethylene terephthalate, and sizes <2.5 mm. There was a negative correlation between the polymer type in fish and that in water, while a positive correlation between shapes of microplastics of both fish species. Results will aid in formulating management measures for preventing microplastic pollution in Xiamen, ultimately promoting coastal resilience and sustainability of coastal communities.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Plásticos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Peces , Agua , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...